viernes, 7 de mayo de 2010

El deterioro de la capa de ozono
El ambiente en el que transcurre la vida no es estático, está sujeto a cambios. Algunos son el fruto de procesos naturales, pero otros son el resultado de acciones humanas. En este último sentido, y así como nuestra especie pudo transformar desiertos en lugares habitables, también afectamos al ecosistema mediante acciones que se desentienden de sus consecuencias lejanas.La lesión a la atmósfera es un ejemplo de alteración lesiva, fruto tanto de factores naturales como de conductas humanas. A la polución tóxica que enrarece el aire urbano se le agrega el debilitamiento de la capa de ozono sobre la Antártida, lo cual afecta una amplia zona del planeta.Sobre el Mar Muerto y el Artico también se advierte la destrucción de las moléculas de ozono, fruto de la presencia de óxido de bromo.Descubierta en 1985, la baja concentración de ozono en el continente blanco siguió una tendencia preocupante, a punto de alcanzar en 1998 su nivel histórico más reducido e incrementando, consiguientemente, la zona de influencia del fenómeno. Así, el agujero de ozono existente provoca una anómala circulación atmosférica y permite el ingreso del nocivas radiaciones ultravioleta desde la Patagonia y hasta el sur del Brasil.Si bien el ozono se ve lesionado por sustancias producidas por la misma dinámica de la naturaleza -como ocurre con el óxido de bromo-, algunas de nuestras conductas han tenido fatales consecuencias. Así, la persistente utilización de gas clorofluocarbono en aerosoles y equipos de refrigeración ha sido la causa principal de la erosión de la capa de ozono.El tema se ha discutido largamente en los foros internacionales y se han forjado algunos acuerdos en la materia, pero todavía no se ha logrado la sustitución de las sustancias tóxicas.Según los especialistas, las alteraciones en la capa atmosférica podrían llegar a tener un impacto en el clima. Dada la sensibilidad del ecosistema a las alteraciones que recibe, es lógico suponer que sus reacciones nos afectarán. Mientras tanto, fenómenos climáticos como el calentamiento de la Tierra parecen guardar vinculación con inundaciones y desastres naturales.Desastres que causan víctimas, que deterioran las condiciones de vida y que nos obligan a saber más sobre la naturaleza para prevenir catástrofes. Y, fundamentalmente, para superar las prácticas que contribuyen a dañar el entorno en el cual debemos vivir.

LA CAPA DE OZONO

La Capa De Ozono
Que Es La Capa De Ozono
El deterioro de la capa de ozono es hoy día uno de los más se serios problemas ambientales con que se enfrenta nuestro planeta. Localizada en la estratosfera, la capa de ozono actúa a la manera de un potente filtro que deja pasar sólo una pequeña parte de la radiación ultravioleta que nos viene del Sol denominada B; esta zona del espectro se extiende desde los 290 nanómetros hasta 310 nanómetros. Dicha radiación si su intensidad v el tiempo de exposición a la misma son elevados produce eritemas, conjuntivitis y de deterioro del sistema de defensas en los seres humanos, limita el crecimiento de las plantas y daña el fitoplancton, con las consecuencias que de ello se derivan para el normal desarrollo de la fauna marina.
Historia
Los primeros datos sobre el deterioro de la capa de Ozono se remontan al año 1982, cuando se publicaron los va1ores sobre la co1umna de ozono obtenidos por la estación japonesa de Syowa en la Antártida. Los niveles de la columna de ozono, registrados desde el año 1964 indicaban que a partir del año 1975 ésta presentaba un debilitamienlo evidente. Más tarde otras estaciones ubicadas también en el continente Antártico darían a conocer resultados similares. Todas coincidían en que e1 deterioro comenzó en la década de los setenta. El daño de la capa registrado en la Antártida aparecía en todas las estaciones al comienzo de la primavera austral y mostraba por aquellas fechas una corta duración y un rápido restablecimienlo.
Por Que Se Destruye La Capa De Ozono
La forma por la cual se destruye el ozono es bastante sencilla. La radiación UV arranca el cloro de una molécula de clorofluorocarbono (CFC). Este átomo de cloro, al combinarse con una molécula de ozono la destruye, para luego combinarse con otras moléculas de ozono y eliminarlas. El proceso es altamente dañino, ya que en promedio un átomo de cloro es capaz de destruir hasta 100.000 moléculas de ozono. Este proceso se detiene finalmente cuando este átomo de cloro se mezcla con algún compuesto químico que lo neutraliza.
Impacto Ambiental De La Destrucción De La Capa De Ozono
El incremento de la radiación UV-B:
Inicia y promueve el cáncer a la piel maligno y no maligno.
Daña el sistema inmunológico, exponiendo a la persona a la acción de varias bacterias y virus.
Provoca daño a los ojos, incluyendo cataratas.
Hace más severas las quemaduras del sol y avejentan la piel.
Aumenta el riesgo de dermatitis alérgica y tóxica.
Activa ciertas enfermedades por bacterias y virus.
Aumentan los costos de salud.
Impacta principalmente a la población indígena.
Reduce el rendimiento de las cosechas.
Reduce el rendimiento de la industria pesquera.
Daña materiales y equipamiento que están al aire
La Tierra debido a su fuerza de gravedad retiene en su superficie al aire y al agua del mar, y para poner en movimiento al aire y al mar en relación con la superficie del planeta se necesita la energía cuya fuente primaria es el Sol, que emite en todas direcciones un flujo de luz visible o próxima a la radiación visible, en las zonas del ultravioleta y del infrarrojo.
De acuerdo con los planteamientos de Sadi Carnot acerca del funcionamiento de la máquina de vapor, se sabe que la transformación de la energía térmica en energía mecánica no puede ser total. Un motor térmico requiere de una fuente caliente que suministre la energía térmica y una fuente fría que la reciba. Al considerar a la Tierra como un motor térmico, la fuente que suministra la energía térmica es la superficie del suelo calentada por la radiación solar y la fuente fría está localizada en las capas altas de la atmósfera, enfriada continuamente por la pérdida de energía en forma de radiación infrarroja emitida por el suelo caliente hacia el espacio sideral.
La Tierra solamente recibe una pequeña cantidad de la energía emitida por el Sol. La luz solar no se utiliza directamente, sino en forma de calor, por lo tanto, es necesario que la atmósfera transforme la energía térmica de la radiación solar en energía mecánica del viento. La fuente de calor para la atmósfera es la superficie del suelo calentada por la luz solar que luego es emitida como radiación infrarroja hacia el espacio.
El efecto invernadero es uno de los principales factores que provocan el calentamiento global de la Tierra, debido a la acumulación de los llamados gases invernadero CO2 , H2O, O3 , CH4 y CFC´s en la atmósfera.
El matemático francés Jean B. J. Fourier planteó que la Tierra es un planeta azul debido a su atmósfera y que sería un planeta negro si careciera de ella y que se congelaría el agua si no tuviera la mezcla de gases que forman su atmósfera. En 1827 comparó la influencia de la atmósfera terrestre con un invernadero y dijo que los gases que forman la atmósfera de la Tierra servían como las paredes de cristal de un invernadero para mantener el calor.
El físico irlandés John Tyndall, en 1859, descubrió que ni el oxígeno ni el nitrógeno producen efecto invernadero, lo cual indica que el 99 % de los componentes de la atmósfera no producen efecto invernadero y que el agua, el bióxido de carbono y el ozono sí lo producen. Tyndall se dio cuenta que el bióxido de carbono absorbe una gran cantidad de energía y que su concentración varía de manera natural debido a diferentes fenómenos, entre los que se encuentra la fijación orgánica que llevan a cabo las plantas (ver fotosíntesis). También que la disminución de la concentración del bióxido de carbono en la atmósfera provocaría el enfriamiento del planeta y que ésta podría ser la explicación de las glaciaciones en la Tierra.
Las moléculas de oxígeno, nitrógeno, agua, anhídrido carbónico y del ozono son casi transparentes a la luz solar pero las moléculas de CO2 , H2O, O3 , CH4 y CFC´s son parcialmente opacas a las radiaciones infrarrojas, es decir, que absorben a las radiaciones infrarrojas emitidas por el suelo que ha sido calentado por la luz solar.
Cuando la radiación infrarroja choca con las moléculas de CO2 , H2O, O3 , CH4 y CFC´s es absorbida por ellas. Estas moléculas que vibran, se mueven y emiten energía en forma de rayos invisibles e infrarrojos, provocan el fenómeno conocido como efecto invernadero, que mantiene caliente la atmósfera terrestre . Las radiaciones rebotan entre la mezcla de moléculas que componen a la atmósfera hasta que finalmente escapan al espacio sideral.
El término efecto invernadero aplicado a la Tierra se refiere al posible calentamiento global debido a la acumulación de los gases de invernadero provocada por la actividad humana, principalmente desde la revolución industrial por la quema de combustibles fósiles y la producción de nuevos productos químicos.
El químico sueco Svante A. Arrhenius, en 1896, planteó que la concentración de anhídrido carbónico se está incrementando continuamente debido a la quema de carbón, petróleo y leña, lo cual hace que la temperatura promedio de la Tierra sea cada vez mayor. Señaló que en caso de duplicarse la concentración del anhídrido carbónico de la atmósfera, la temperatura promedio de la Tierra aumentaría entre 5 y 6ºC.
Aunque se conocía el efecto invernadero, durante la primera mitad del siglo XX los investigadores de la Tierra no lo consideraron como un problema de la estabilidad del planeta, ya que antes consideraban que los océanos podían absorber al anhídrido carbónico formando carbonato de calcio (CaCO3) que caería al fondo del mar sin causar ningún daño.
La radiación infrarroja es absorbida en mayor cantidad por el vapor de agua, le sigue el anhídrido carbónico y luego el ozono, pero de estos 3 compuestos químicos es el anhídrido carbónico el que produce mayor efecto invernadero porque el hombre está incrementando su concentración como consecuencia de las actividades que realiza.
Se considera que sin el efecto invernadero producido por el bióxido de carbono natural la temperatura de la Tierra sería de alrededor de 20 ºC bajo cero ( - 20 ºC).
Los científicos están de acuerdo en que el anhídrido carbónico interviene en el efecto invernadero y que su concentración está aumentando (ver gráfica) , pero no están de acuerdo en dos aspectos cruciales del efecto invernadero: 1) si ya ha comenzado el calentamiento de la Tierra y 2) cuánto se incrementará el calentamiento global

EFECTO DE INVERNADERO

Efecto invernadero

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de una atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con la mayoría de la comunidad científica, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.
Este fenómeno evita que la energía solar recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero.

Efecto Invernadero de varios gases de la atmósfera .Se llama efecto invernadero al proceso por el que ciertos gases de la atmósfera retienen gran parte de la radiación infrarroja emitida por la Tierra y la reemiten de nuevo a la superficie terrestre calentando la misma. Estos gases han estado presentes en la atmósfera en cantidades muy reducidas durante la mayor parte de la historia de la Tierra.[10]
Aunque la atmósfera seca está compuesta prácticamente por nitrógeno (78,1%), oxígeno (20,9%) y argón (0,93%), son gases muy minoritarios en su composición como el dióxido de carbono (0,035%), el ozono y otros los que desarrollan esta actividad radiativa. Además, la atmósfera contiene vapor de agua (1%) que también es un gas radiativamente activo, siendo con diferencia el gas natural invernadero más importante. El dióxido de carbono ocupa el segundo lugar en importancia.[3]

La denominada curva Keeling muestra el continuo crecimiento de CO2 en la atmósfera desde 1958. Recoge las mediciones de Keeling en el observatorio del volcán Mauna Loa. Estas mediciones fueron la primera evidencia significativa del rápido aumento de CO2 en la atmósfera y atrajo la atención mundial sobre el impacto de las emisiones de los gases invernadero.[11]
El efecto invernadero es esencial para la vida del planeta: sin CO2 ni vapor de agua (sin el efecto invernadero) la temperatura media de la Tierra sería unos 33 °C menos, del orden de 18 °C bajo cero, lo que haría inviable la vida.[12]
Actualmente el CO2 presente en la atmósfera está creciendo de modo no natural por las actividades humanas, principalmente por la combustión de carbón, petróleo y gas natural que está liberando el carbono almacenado en estos combustibles fósiles y la deforestación de la selva pluvial que libera el carbono almacenado en los árboles. Por tanto es preciso diferenciar entre el efecto invernadero natural del originado por las actividades de los hombres (o antropogénico).[10]
La población se ha multiplicado y la tecnología ha alcanzado una enorme y sofisticada producción de forma que se está presionando muchas partes del medio ambiente terrestre siendo la Atmósfera la zona más vulnerable de todas por su delgadez. Dado el reducido espesor atmosférico la alteración de algunos componentes moleculares básicos que también se encuentran en pequeña proporción supone un cambio significativo. En concreto, la variación de la concentración de CO2, el más importante de los gases invernadero de la atmósfera. Ya se ha explicado el papel básico que estos gases tienen como reguladores de la temperatura del Planeta.[13]
Los gases invernadero permanecen activos en la atmósfera mucho tiempo, por eso se les denomina de larga permanencia. Eso significa que los gases que se emiten hoy permanecerán durante muchas generaciones produciendo el efecto invernadero. Así del CO2 emitido a la atmósfera: sobre el 50% tardará 30 años en desaparecer, un 30% permanecerá varios siglos y el 20% restante durará varios millares de años.[14]
La concentración de CO2 atmosférico se ha incrementado desde la época preindustrial (año 1.750) desde un valor de 280 ppm a 379 ppm en 2005. Se estima que 2/3 de las emisiones procedían de la quema de combustibles fósiles (petroleo, gas y carbón) mientras un 1/3 procede del cambio en la utilización del suelo (Incluida la deforestación). Del total emitido solo el 45% permanece en la atmósfera, sobre el 30% es absorbido por los océanos y el restante 25% pasa a la biosfera terrestre. Por tanto no solo la atmósfera está aumentando su concentración de CO2, también está ocurriendo en los océanos y en la biosfera.[14]

LA LLUVIA ACIDA

La lluvia ácida se forma cuando la humedad en el aire se combina con los óxidos de nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. En interacción con el vapor de agua, estos gases forman ácido sulfúrico y ácidos nítricos. Finalmente, estas sustancias químicas caen a la tierra acompañando a las precipitaciones, constituyendo la lluvia ácida.
Los contaminantes atmosféricos primarios que dan origen a la lluvia ácida pueden recorrer grandes distancias, trasladándolos los vientos cientos o miles de kilómetros antes de precipitar en forma de rocío, lluvia, llovizna, granizo, nieve, niebla o neblina. Cuando la precipitación se produce, puede provocar importantes deterioros en el ambiente.
La lluvia normalmente presenta un pH de aproximadamente 5.65 (ligeramente ácido), debido a la presencia del CO2 atmosférico, que forma ácido carbónico, H2CO3. Se considera lluvia ácida si presenta un pH de menos de 5 y puede alcanzar el pH del vinagre (pH 3). Estos valores de pH se alcanzan por la presencia de ácidos como el ácido sulfúrico, H2SO4, y el ácido nítrico, HNO3. Estos ácidos se forman a partir del dióxido de azufre, SO2, y el monóxido de nitrógeno que se convierten en ácidos.
Los hidrocarburos y el carbón usados como fuente de energía, en grandes cantidades, pueden también producir óxidos de azufre y nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. En interacción con el vapor de agua, estos gases forman ácido sulfúrico y ácidos nítricos. Finalmente, estas sustancias químicas suben a la atmósfera, forman una nube y después caen a la tierra acompañando a las precipitaciones, constituyendo la lluvia ácida.

Formación de la lluvia ácida
Una gran parte del SO2 (dióxido de azufre) emitido a la atmósfera procede de la emisión natural que se produce por las erupciones volcánicas, que son fenómenos irregulares. Sin embargo, una de las fuentes de SO2 es la industria metalúrgica. El SO2 puede proceder también de otras fuentes, por ejemplo como el sulfuro de dimetilo, (CH3)2S, y otros derivados, o como sulfuro de hidrógeno, H2S. Estos compuestos se oxidan con el oxígeno atmosférico dando SO2. Finalmente el SO2 se oxida a SO3 (interviniendo en la reacción radicales hidroxilo y oxígeno) y este SO3 puede quedar disuelto en las gotas de lluvia, es el de las emisiones de SO2 en procesos de obtención de energía: el carbón, el petróleo y otros combustibles fósiles contienen azufre en unas cantidades variables (generalmente más del 1%), y, debido a la combustión, el azufre se oxida a dióxido de azufre.
S + O2 → SO2
Los procesos industriales en los que se genera SO2, por ejemplo, son los de la industria metalúrgica. En la fase gaseosa el dióxido de azufre se oxida por reacción con el radical hidroxilo por una reacción intermolecular.
SO2 + OH· → HOSO2· seguida por HOSO2· + O2 → HO2· + SO 3
En presencia del agua atmosférica o sobre superficies húmedas, el trióxido de azufre (SO3) se convierte rápidamente en ácido sulfúrico (H2SO4).
SO3(g) + H2O (l) → H2SO4(l)
El NO se forma por reacción entre el oxígeno y el nitrógeno a alta temperatura.
O2 + N2 → 2NO
Una de las fuentes más importantes es a partir de las reacciones producidas en los motores térmicos de los automóviles y aviones, donde se alcanzan temperaturas muy altas. Este NO se oxida con el oxígeno atmosférico,
O2 + 2NO → 2NO2, y este 2NO2
y reacciona con el agua dando ácido nítrico (HNO3), que se disuelve en el agua.
3NO2 + H2O → 2HNO3 + NO
Efectos de la lluvia ácida
La acidificación de las aguas de lagos, ríos y mares dificulta el desarrollo de vida acuática en estas aguas, lo que aumenta en gran medida la mortalidad de peces. Igualmente, afecta directamente a la vegetación, por lo que produce daños importantes en las zonas forestales, y acaba con los microorganismos fijadores de N.
El termino "lluvia ácida" abarca la sedimentación tanto húmeda como seca de contaminantes ácidos que pueden producir el deterioro de la superficies de los materiales. Estos contaminantes que escapan a la atmósfera al quemarse carbón y otros componentes fósiles reaccionan con el agua y los oxidantes de la atmósfera y se transforman químicamente en ácido sulfúrico y nítrico. Los compuestos ácidos se precipitan entonces a la tierra en forma de lluvia, nieve o niebla, o pueden unirse a partículas secas y caer en forma de sedimentación seca.
La lluvia ácida por su carácter corrosivo, corroe las construcciones y las infraestructuras. Puede disolver, por ejemplo, el carbonato de calcio, CaCO3, y afectar de esta forma a los monumentos y edificaciones construidas con mármol o caliza.
Un efecto indirecto muy importante es que los protones, H+, procedentes de la lluvia ácida arrastran ciertos iones del suelo. Por ejemplo, cationes de hierro, calcio, aluminio, plomo o zinc. Como consecuencia, se produce un empobrecimiento en ciertos nutrientes esenciales y el denominado estrés en las plantas, que las hace más vulnerables a las plagas.
Los nitratos y sulfatos, sumados a los cationes lixiviados de los suelos, contribuyen a la eutrofización de ríos y lagos, embalses y regiones costeras, lo que deteriora sus condiciones ambientales naturales y afecta negativamente a su aprovechamiento.
Un estudio realizado en 2005 por Vincent Gauci[1] de Open University, sugiere que cantidades relativamente pequeñas de sulfato presentes en la lluvia ácida tienen una fuerte influencia en la reducción de gas metano producido por metanógenos en áreas pantanosas, lo cual podría tener un impacto, aunque sea leve, en el efecto invernadero.[2]
Soluciones Entre las medidas que se pueden tomar para reducir la emisión de los contaminantes precursores de éste problema tenemos las siguientes:
Reducir el nivel máximo de azufre en diferentes combustibles.
Trabajar en conjunto con las fuentes fijas de la industria para establecer disminuciones en la emisión de SOx y NOx, usando tecnologías para control de emisión de estos óxidos.
Impulsar el uso de gas natural en diversas industrias.
Introducir el convertidor catalítico de tres vías.
La conversión a gas en vehículos de empresas mercantiles y del gobierno.
Ampliación del sistema de transporte eléctrico.
Instalación de equipos de control en distintos establecimientos.
No agregar muchas sustancias químicas en los cultivos.
Adición de un compuesto alcalino en lagos y ríos para neutralizar el pH.
Control de las condiciones de combustión (temperatura, oxigeno, etc.).

COMO SE PUEDEN EVITAR

Como evitar el calentamiento global:
Reduciendo el uso de tu carro en 15 Kilómetros semanales evitas emitir 230Kilos de dióxido de carbono al año.1 auto contribuye un 10% del monóxido de carbono que afecta la atmósfera.
Una hectárea de árboles elimina, a lo largo de un año, la misma cantidad de dióxido de carbono que producen cuatro familias en ese mismo tiempo. Un solo árbol elimina una tonelada de dióxido de carbono a lo largo de su vida.
Producir un kilo de carne utiliza más agua que 365 duchas prendidas. Por otro lado, consumiendo alimentos frescos evitas producir comida congelada que consume 10 veces más energía.
Reduciendo el exceso de energía evitas que los países se vean en la necesidad de usar petróleo, carbón o gas para copar la oferta energética
Al reutilizar 100 kilos de papel, se salva la vida de al menos siete árboles.Por otro lado, la fabricación de papel reciclado consume entre 70% y 90% menos energía y evita que continúe la desforestación mundial.
Los focos ahorradores consumen 60% menos electricidad que un foco tradicional. Este simple cambio reducirá la emisión de 140 kilos de dióxido de carbono al año.
Hacerle mantenimiento a tu auto regularmente, reduce la emisión de gases a la atmósfera.
Si se reduce en un 10% la basura personal, se puede ahorrar 540 kilos de dioxido de carbono al año. Además se pueden ahorrar hasta 1000 kilos de residuos en un año reciclando la mitad de los residuos de una familia.
Cada litro de gasolina ahorrado evita la emisión de tres kilos de dióxido de carbono.
Inflar correctamente las llantas mejora la tasa de consumo de combustible en más de 3%.

CUALES SON SUS EFECTOS

Los cambios pronosticados tendrían el potencial de derivar en cambios de gran escala, y probablemente irreversibles, en el clima; resultando en un impacto de alcance global.El deshielo es uno de los efectos de mayor importancia que afecta e influye ahora, sin agregar el efecto de los gases invernaderos que es otro tema de importancia que afecta a nivel mundial.
Algunos ejemplos de los cambios pronosticados:
Significante reducción de la circulación del océano que transporta agua caliente al Norte del Atlántico.
Gran reducción de los glaciares de Groenlandia y la Antártida.
Aceleración del calentamiento global debido a la retroalimentación del ciclo de carbono en la biosfera terrestre.
Desprendimientos de carbono terrestre de regiones permanentemente congeladas e hidratos de metano en sedimentos costeros.
Las características finales de estos cambios aun son inciertas. Sin embargo, la probabilidad de que uno o más de estos cambios ocurra, incrementa con la magnitud y duración.
Los efectos del calentamiento global no serían uniformemente negativos. Los cambios podrían ser beneficiosos para algunas regiones e igualmente negativos para otras. Los científicos no pueden predecir con precisión cuando ocurrirán y la magnitud de los efectos que podría desencadenar el calentamiento global.
Según encuestas de diferentes regiones del mundo, el calentamiento global es hoy una preocupación mayor en la vida cotidiana de las personas. En ciertas ciudades se ha constatado que más del 90% de la población tiene preocupación por los efectos que dicho fenómeno podría traer a futuras generaciones.
Efectos medioambientales
Efectos en el clima
El incremento de la temperatura llevaría al incremento de las precipitaciones, pero el efecto en las tormentas es menos claro. Las tormentas extratropicales dependen parcialmente en la graduación de la temperatura, que se debilitaría en el hemisferio norte mientras la región polar se calienta más que el resto del hemisferio; esto provocaría una baja en los niveles de hielo y una subida en los ciclos de deshielo a nivel mundial.
La temperatura del planeta ha venido elevándose a mediados del siglo XX cuando se puso fin a la etapa conocida como edad de hielo, predicciones basadas en diferentes modelos del incremento de la temperatura media global respecto de su valor en el año 2000, cualquier tipo de cambio climático además implica cambio en otras variables la complejidad del problema y sus similes múltiples interacciones hacen que la única manera de evaluar estos cambios se mediante el uso de modelos de computación que intentan similar la física de atmósfera y del oceano, la teoría antropologica predice que el calentamiento global continuara si lo hacen las emisiones de gases de efecto invernadero. El cuerpo de la ONU encargado del análisis de los datos científicos es el panel intergunamental del cambio climático (IPCC por sus siglas en inglés de inter-Governmental Panel on Climate Change).